![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > erex | Unicode version |
Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erssxp 7353 | . . 3 | |
2 | sqxpexg 6605 | . . 3 | |
3 | ssexg 4598 | . . 3 | |
4 | 1, 2, 3 | syl2an 477 | . 2 |
5 | 4 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
cvv 3109
C_ wss 3475 X. cxp 5002 Er wer 7327 |
This theorem is referenced by: erexb 7355 qliftlem 7411 qshash 13639 qusaddvallem 14948 qusaddflem 14949 qusaddval 14950 qusaddf 14951 qusmulval 14952 qusmulf 14953 qusgrp2 16188 efgrelexlemb 16768 efgcpbllemb 16773 frgpuplem 16790 qusring2 17269 vitalilem2 22018 vitalilem3 22019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-er 7330 |
Copyright terms: Public domain | W3C validator |