![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > erinxp | Unicode version |
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erinxp.r | |
erinxp.a |
Ref | Expression |
---|---|
erinxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3718 | . . . 4 | |
2 | relxp 5115 | . . . 4 | |
3 | relss 5095 | . . . 4 | |
4 | 1, 2, 3 | mp2 9 | . . 3 |
5 | 4 | a1i 11 | . 2 |
6 | simpr 461 | . . . . 5 | |
7 | brinxp2 5066 | . . . . 5 | |
8 | 6, 7 | sylib 196 | . . . 4 |
9 | 8 | simp2d 1009 | . . 3 |
10 | 8 | simp1d 1008 | . . 3 |
11 | erinxp.r | . . . . 5 | |
12 | 11 | adantr 465 | . . . 4 |
13 | 8 | simp3d 1010 | . . . 4 |
14 | 12, 13 | ersym 7342 | . . 3 |
15 | brinxp2 5066 | . . 3 | |
16 | 9, 10, 14, 15 | syl3anbrc 1180 | . 2 |
17 | 10 | adantrr 716 | . . 3 |
18 | simprr 757 | . . . . 5 | |
19 | brinxp2 5066 | . . . . 5 | |
20 | 18, 19 | sylib 196 | . . . 4 |
21 | 20 | simp2d 1009 | . . 3 |
22 | 11 | adantr 465 | . . . 4 |
23 | 13 | adantrr 716 | . . . 4 |
24 | 20 | simp3d 1010 | . . . 4 |
25 | 22, 23, 24 | ertrd 7346 | . . 3 |
26 | brinxp2 5066 | . . 3 | |
27 | 17, 21, 25, 26 | syl3anbrc 1180 | . 2 |
28 | 11 | adantr 465 | . . . . . 6 |
29 | erinxp.a | . . . . . . 7 | |
30 | 29 | sselda 3503 | . . . . . 6 |
31 | 28, 30 | erref 7350 | . . . . 5 |
32 | 31 | ex 434 | . . . 4 |
33 | 32 | pm4.71rd 635 | . . 3 |
34 | brin 4501 | . . . 4 | |
35 | brxp 5035 | . . . . . 6 | |
36 | anidm 644 | . . . . . 6 | |
37 | 35, 36 | bitri 249 | . . . . 5 |
38 | 37 | anbi2i 694 | . . . 4 |
39 | 34, 38 | bitri 249 | . . 3 |
40 | 33, 39 | syl6bbr 263 | . 2 |
41 | 5, 16, 27, 40 | iserd 7356 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 i^i cin 3474
C_ wss 3475 class class class wbr 4452
X. cxp 5002 Rel wrel 5009 Er wer 7327 |
This theorem is referenced by: frgpuplem 16790 pi1buni 21540 pi1addf 21547 pi1addval 21548 pi1grplem 21549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |