![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eroprf | Unicode version |
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
eropr.1 | |
eropr.2 | |
eropr.3 | |
eropr.4 | |
eropr.5 | |
eropr.6 | |
eropr.7 | |
eropr.8 | |
eropr.9 | |
eropr.10 | |
eropr.11 | |
eropr.12 | |
eropr.13 | |
eropr.14 | |
eropr.15 |
Ref | Expression |
---|---|
eroprf |
J
,,,,, ,,,,,,,,, ,,,,, S
,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,, ,,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr.3 | . . . . . . . . . . . 12 | |
2 | 1 | ad2antrr 725 | . . . . . . . . . . 11 |
3 | eropr.10 | . . . . . . . . . . . . 13 | |
4 | 3 | adantr 465 | . . . . . . . . . . . 12 |
5 | 4 | fovrnda 6446 | . . . . . . . . . . 11 |
6 | ecelqsg 7385 | . . . . . . . . . . 11 | |
7 | 2, 5, 6 | syl2anc 661 | . . . . . . . . . 10 |
8 | eropr.15 | . . . . . . . . . 10 | |
9 | 7, 8 | syl6eleqr 2556 | . . . . . . . . 9 |
10 | eleq1a 2540 | . . . . . . . . 9 | |
11 | 9, 10 | syl 16 | . . . . . . . 8 |
12 | 11 | adantld 467 | . . . . . . 7 |
13 | 12 | rexlimdvva 2956 | . . . . . 6 |
14 | 13 | abssdv 3573 | . . . . 5 |
15 | eropr.1 | . . . . . . 7 | |
16 | eropr.2 | . . . . . . 7 | |
17 | eropr.4 | . . . . . . 7 | |
18 | eropr.5 | . . . . . . 7 | |
19 | eropr.6 | . . . . . . 7 | |
20 | eropr.7 | . . . . . . 7 | |
21 | eropr.8 | . . . . . . 7 | |
22 | eropr.9 | . . . . . . 7 | |
23 | eropr.11 | . . . . . . 7 | |
24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 7425 | . . . . . 6 |
25 | iotacl 5579 | . . . . . 6 | |
26 | 24, 25 | syl 16 | . . . . 5 |
27 | 14, 26 | sseldd 3504 | . . . 4 |
28 | 27 | ralrimivva 2878 | . . 3 |
29 | eqid 2457 | . . . 4 | |
30 | 29 | fmpt2 6867 | . . 3 |
31 | 28, 30 | sylib 196 | . 2 |
32 | eropr.12 | . . . 4 | |
33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 7426 | . . 3 |
34 | 33 | feq1d 5722 | . 2 |
35 | 31, 34 | mpbird 232 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 E! weu 2282
{ cab 2442 A. wral 2807 E. wrex 2808
C_ wss 3475 class class class wbr 4452
X. cxp 5002 iota cio 5554 --> wf 5589
(class class class)co 6296 { coprab 6297 e. cmpt2 6298 Er wer 7327
[ cec 7328 /. cqs 7329 |
This theorem is referenced by: eroprf2 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-er 7330 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |