![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > erovlem | Unicode version |
Description: Lemma for erov 7427 and eroprf 7428. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
eropr.1 | |
eropr.2 | |
eropr.3 | |
eropr.4 | |
eropr.5 | |
eropr.6 | |
eropr.7 | |
eropr.8 | |
eropr.9 | |
eropr.10 | |
eropr.11 | |
eropr.12 |
Ref | Expression |
---|---|
erovlem |
J
,,,,, ,,,,,,,,, ,,,,, S
,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . . . 8 | |
2 | 1 | reximi 2925 | . . . . . . 7 |
3 | 2 | reximi 2925 | . . . . . 6 |
4 | eropr.1 | . . . . . . . . . 10 | |
5 | 4 | eleq2i 2535 | . . . . . . . . 9 |
6 | vex 3112 | . . . . . . . . . 10 | |
7 | 6 | elqs 7383 | . . . . . . . . 9 |
8 | 5, 7 | bitri 249 | . . . . . . . 8 |
9 | eropr.2 | . . . . . . . . . 10 | |
10 | 9 | eleq2i 2535 | . . . . . . . . 9 |
11 | vex 3112 | . . . . . . . . . 10 | |
12 | 11 | elqs 7383 | . . . . . . . . 9 |
13 | 10, 12 | bitri 249 | . . . . . . . 8 |
14 | 8, 13 | anbi12i 697 | . . . . . . 7 |
15 | reeanv 3025 | . . . . . . 7 | |
16 | 14, 15 | bitr4i 252 | . . . . . 6 |
17 | 3, 16 | sylibr 212 | . . . . 5 |
18 | 17 | pm4.71ri 633 | . . . 4 |
19 | eropr.3 | . . . . . . . 8 | |
20 | eropr.4 | . . . . . . . 8 | |
21 | eropr.5 | . . . . . . . 8 | |
22 | eropr.6 | . . . . . . . 8 | |
23 | eropr.7 | . . . . . . . 8 | |
24 | eropr.8 | . . . . . . . 8 | |
25 | eropr.9 | . . . . . . . 8 | |
26 | eropr.10 | . . . . . . . 8 | |
27 | eropr.11 | . . . . . . . 8 | |
28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 7425 | . . . . . . 7 |
29 | iota1 5570 | . . . . . . 7 | |
30 | 28, 29 | syl 16 | . . . . . 6 |
31 | eqcom 2466 | . . . . . 6 | |
32 | 30, 31 | syl6bb 261 | . . . . 5 |
33 | 32 | pm5.32da 641 | . . . 4 |
34 | 18, 33 | syl5bb 257 | . . 3 |
35 | 34 | oprabbidv 6351 | . 2 |
36 | eropr.12 | . 2 | |
37 | df-mpt2 6301 | . . 3 | |
38 | nfv 1707 | . . . 4 | |
39 | nfv 1707 | . . . . 5 | |
40 | nfiota1 5558 | . . . . . 6 | |
41 | 40 | nfeq2 2636 | . . . . 5 |
42 | 39, 41 | nfan 1928 | . . . 4 |
43 | eqeq1 2461 | . . . . 5 | |
44 | 43 | anbi2d 703 | . . . 4 |
45 | 38, 42, 44 | cbvoprab3 6373 | . . 3 |
46 | 37, 45 | eqtr4i 2489 | . 2 |
47 | 35, 36, 46 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
E! weu 2282 E. wrex 2808 C_ wss 3475
class class class wbr 4452 X. cxp 5002
iota cio 5554 --> wf 5589 (class class class)co 6296
{ coprab 6297 e. cmpt2 6298 Er wer 7327
[ cec 7328 /. cqs 7329 |
This theorem is referenced by: erov 7427 eroprf 7428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |