MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erref Unicode version

Theorem erref 7350
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1
erref.2
Assertion
Ref Expression
erref

Proof of Theorem erref
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4
2 ersymb.1 . . . . 5
3 erdm 7340 . . . . 5
42, 3syl 16 . . . 4
51, 4eleqtrrd 2548 . . 3
6 eldmg 5203 . . . 4
71, 6syl 16 . . 3
85, 7mpbid 210 . 2
92adantr 465 . . 3
10 simpr 461 . . 3
119, 10, 10ertr4d 7349 . 2
128, 11exlimddv 1726 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  E.wex 1612  e.wcel 1818   class class class wbr 4452  domcdm 5004  Erwer 7327
This theorem is referenced by:  iserd  7356  erth  7375  iiner  7402  erinxp  7404  nqerid  9332  enqeq  9333  qusgrp  16256  sylow2alem1  16637  sylow2alem2  16638  sylow2a  16639  efginvrel2  16745  efgsrel  16752  efgcpbllemb  16773  frgp0  16778  frgpnabllem1  16877  frgpnabllem2  16878  pcophtb  21529  pi1xfrf  21553  pi1xfr  21555  pi1xfrcnvlem  21556  prtlem10  30606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-er 7330
  Copyright terms: Public domain W3C validator