![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > errel | Unicode version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 7330 | . 2 | |
2 | 1 | simp1bi 1011 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
u. cun 3473 C_ wss 3475 `' ccnv 5003
dom cdm 5004 o. ccom 5008 Rel wrel 5009
Er wer 7327 |
This theorem is referenced by: ercl 7341 ersym 7342 ertr 7345 ercnv 7351 erssxp 7353 erth 7375 iiner 7402 frgpuplem 16790 ismntop 28004 topfneec 30173 prter3 30623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-er 7330 |
Copyright terms: Public domain | W3C validator |