MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Unicode version

Theorem errel 7339
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel

Proof of Theorem errel
StepHypRef Expression
1 df-er 7330 . 2
21simp1bi 1011 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  u.cun 3473  C_wss 3475  `'ccnv 5003  domcdm 5004  o.ccom 5008  Relwrel 5009  Erwer 7327
This theorem is referenced by:  ercl  7341  ersym  7342  ertr  7345  ercnv  7351  erssxp  7353  erth  7375  iiner  7402  frgpuplem  16790  ismntop  28004  topfneec  30173  prter3  30623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-er 7330
  Copyright terms: Public domain W3C validator