MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu3v Unicode version

Theorem eu3v 2312
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Add a distinct variable condition on . (Revised by Wolf Lammen, 29-May-2019.)
Assertion
Ref Expression
eu3v
Distinct variable groups:   ,   ,

Proof of Theorem eu3v
StepHypRef Expression
1 eu5 2310 . 2
2 mo2v 2289 . . 3
32anbi2i 694 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282  E*wmo 2283
This theorem is referenced by:  2eu4OLD  2381  eqeu  3270  reu3  3289  eunex  4645  bj-eunex  34385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator