![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eu5 | Unicode version |
Description: Uniqueness in terms of "at most one." Revised to reduce dependencies on axioms. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.) |
Ref | Expression |
---|---|
eu5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abai 795 | . 2 | |
2 | euex 2308 | . . 3 | |
3 | 2 | pm4.71ri 633 | . 2 |
4 | df-mo 2287 | . . 3 | |
5 | 4 | anbi2i 694 | . 2 |
6 | 1, 3, 5 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 E. wex 1612 E! weu 2282
E* wmo 2283 |
This theorem is referenced by: exmoeu2 2311 eu3v 2312 eumo 2313 eu2 2326 eu4 2338 euim 2344 2euex 2366 2euswap 2370 2exeu 2371 2eu1OLD 2377 2eu4 2380 reu5 3073 reuss2 3777 n0moeu 3798 reusv2lem1 4653 funcnv3 5654 fnres 5702 fnopabg 5709 brprcneu 5864 dff3 6044 finnisoeu 8515 dfac2 8532 recmulnq 9363 uptx 20126 hausflf2 20499 adjeu 26808 mptfnf 27499 fzisoeu 31500 ellimciota 31620 bnj151 33935 bnj600 33977 bj-eu3f 34413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |