MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euanv Unicode version

Theorem euanv 2355
Description: Introduction of a conjunct into uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euanv
Distinct variable group:   ,

Proof of Theorem euanv
StepHypRef Expression
1 nfv 1707 . 2
21euan 2351 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  E!weu 2282
This theorem is referenced by:  eueq2  3273  2reu5lem1  3305  fsn  6069  dfac5lem5  8529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286
  Copyright terms: Public domain W3C validator