![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eubid | Unicode version |
Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
eubid.1 | |
eubid.2 |
Ref | Expression |
---|---|
eubid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubid.1 | . . . 4 | |
2 | eubid.2 | . . . . 5 | |
3 | 2 | bibi1d 319 | . . . 4 |
4 | 1, 3 | albid 1885 | . . 3 |
5 | 4 | exbidv 1714 | . 2 |
6 | df-eu 2286 | . 2 | |
7 | df-eu 2286 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 E. wex 1612 F/ wnf 1616
E! weu 2282 |
This theorem is referenced by: mobid 2303 eubidv 2304 euor 2331 euor2 2333 euan 2351 reubida 3040 reueq1f 3052 eusv2i 4649 reusv2lem3 4655 eubi 31343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 df-eu 2286 |
Copyright terms: Public domain | W3C validator |