MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euexALT Unicode version

Theorem euexALT 2328
Description: Alternate proof of euex 2308. Shorter but uses more axioms. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
euexALT

Proof of Theorem euexALT
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1707 . . 3
21eu1 2327 . 2
3 exsimpl 1677 . 2
42, 3sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612  [wsb 1739  E!weu 2282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286
  Copyright terms: Public domain W3C validator