![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eufnfv | Unicode version |
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011.) |
Ref | Expression |
---|---|
eufnfv.1 | |
eufnfv.2 |
Ref | Expression |
---|---|
eufnfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufnfv.1 | . . . . 5 | |
2 | 1 | mptex 6143 | . . . 4 |
3 | eqeq2 2472 | . . . . . 6 | |
4 | 3 | bibi2d 318 | . . . . 5 |
5 | 4 | albidv 1713 | . . . 4 |
6 | 2, 5 | spcev 3201 | . . 3 |
7 | eufnfv.2 | . . . . . . 7 | |
8 | eqid 2457 | . . . . . . 7 | |
9 | 7, 8 | fnmpti 5714 | . . . . . 6 |
10 | fneq1 5674 | . . . . . 6 | |
11 | 9, 10 | mpbiri 233 | . . . . 5 |
12 | 11 | pm4.71ri 633 | . . . 4 |
13 | dffn5 5918 | . . . . . . 7 | |
14 | eqeq1 2461 | . . . . . . 7 | |
15 | 13, 14 | sylbi 195 | . . . . . 6 |
16 | fvex 5881 | . . . . . . . 8 | |
17 | 16 | rgenw 2818 | . . . . . . 7 |
18 | mpteqb 5970 | . . . . . . 7 | |
19 | 17, 18 | ax-mp 5 | . . . . . 6 |
20 | 15, 19 | syl6bb 261 | . . . . 5 |
21 | 20 | pm5.32i 637 | . . . 4 |
22 | 12, 21 | bitr2i 250 | . . 3 |
23 | 6, 22 | mpg 1620 | . 2 |
24 | df-eu 2286 | . 2 | |
25 | 23, 24 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 E! weu 2282 A. wral 2807
cvv 3109
e. cmpt 4510 Fn wfn 5588 ` cfv 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 |
Copyright terms: Public domain | W3C validator |