MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euim Unicode version

Theorem euim 2344
Description: Add existential uniqueness quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
euim

Proof of Theorem euim
StepHypRef Expression
1 ax-1 6 . . 3
2 euimmo 2343 . . 3
31, 2anim12ii 570 . 2
4 eu5 2310 . 2
53, 4syl6ibr 227 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612  E!weu 2282  E*wmo 2283
This theorem is referenced by:  2eu1  2376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
  Copyright terms: Public domain W3C validator