![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > euim | Unicode version |
Description: Add existential uniqueness quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
euim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . 3 | |
2 | euimmo 2343 | . . 3 | |
3 | 1, 2 | anim12ii 570 | . 2 |
4 | eu5 2310 | . 2 | |
5 | 3, 4 | syl6ibr 227 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 E! weu 2282
E* wmo 2283 |
This theorem is referenced by: 2eu1 2376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |