![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > euind | Unicode version |
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
Ref | Expression |
---|---|
euind.1 | |
euind.2 | |
euind.3 |
Ref | Expression |
---|---|
euind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euind.2 | . . . . . 6 | |
2 | 1 | cbvexv 2024 | . . . . 5 |
3 | euind.1 | . . . . . . . . 9 | |
4 | 3 | isseti 3115 | . . . . . . . 8 |
5 | 4 | biantrur 506 | . . . . . . 7 |
6 | 5 | exbii 1667 | . . . . . 6 |
7 | 19.41v 1771 | . . . . . . 7 | |
8 | 7 | exbii 1667 | . . . . . 6 |
9 | excom 1849 | . . . . . 6 | |
10 | 6, 8, 9 | 3bitr2i 273 | . . . . 5 |
11 | 2, 10 | bitri 249 | . . . 4 |
12 | eqeq2 2472 | . . . . . . . . 9 | |
13 | 12 | imim2i 14 | . . . . . . . 8 |
14 | bi2 198 | . . . . . . . . . 10 | |
15 | 14 | imim2i 14 | . . . . . . . . 9 |
16 | an31 800 | . . . . . . . . . . 11 | |
17 | 16 | imbi1i 325 | . . . . . . . . . 10 |
18 | impexp 446 | . . . . . . . . . 10 | |
19 | impexp 446 | . . . . . . . . . 10 | |
20 | 17, 18, 19 | 3bitr3i 275 | . . . . . . . . 9 |
21 | 15, 20 | sylib 196 | . . . . . . . 8 |
22 | 13, 21 | syl 16 | . . . . . . 7 |
23 | 22 | 2alimi 1634 | . . . . . 6 |
24 | 19.23v 1760 | . . . . . . . 8 | |
25 | 24 | albii 1640 | . . . . . . 7 |
26 | 19.21v 1729 | . . . . . . 7 | |
27 | 25, 26 | bitri 249 | . . . . . 6 |
28 | 23, 27 | sylib 196 | . . . . 5 |
29 | 28 | eximdv 1710 | . . . 4 |
30 | 11, 29 | syl5bi 217 | . . 3 |
31 | 30 | imp 429 | . 2 |
32 | pm4.24 643 | . . . . . . . 8 | |
33 | 32 | biimpi 194 | . . . . . . 7 |
34 | prth 571 | . . . . . . 7 | |
35 | eqtr3 2485 | . . . . . . 7 | |
36 | 33, 34, 35 | syl56 34 | . . . . . 6 |
37 | 36 | alanimi 1637 | . . . . 5 |
38 | 19.23v 1760 | . . . . . . 7 | |
39 | 38 | biimpi 194 | . . . . . 6 |
40 | 39 | com12 31 | . . . . 5 |
41 | 37, 40 | syl5 32 | . . . 4 |
42 | 41 | alrimivv 1720 | . . 3 |
43 | 42 | adantl 466 | . 2 |
44 | eqeq1 2461 | . . . . 5 | |
45 | 44 | imbi2d 316 | . . . 4 |
46 | 45 | albidv 1713 | . . 3 |
47 | 46 | eu4 2338 | . 2 |
48 | 31, 43, 47 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E! weu 2282
cvv 3109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |