![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eunex | Unicode version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) |
Ref | Expression |
---|---|
eunex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 4643 | . . . . 5 | |
2 | alim 1632 | . . . . 5 | |
3 | 1, 2 | mtoi 178 | . . . 4 |
4 | 3 | exlimiv 1722 | . . 3 |
5 | 4 | adantl 466 | . 2 |
6 | eu3v 2312 | . 2 | |
7 | exnal 1648 | . 2 | |
8 | 5, 6, 7 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 E. wex 1612
E! weu 2282 |
This theorem is referenced by: reusv2lem2 4654 unnt 29873 amosym1 29891 alneu 32206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-nul 4581 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |