MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupafi Unicode version

Theorem eupafi 24061
Description: Any graph with an Eulerian path is finite. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
eupafi

Proof of Theorem eupafi
StepHypRef Expression
1 fzfid 11940 . 2
2 eupaf1o 24060 . . 3
3 ovex 6247 . . . 4
43f1oen 7464 . . 3
5 ensym 7492 . . 3
62, 4, 53syl 20 . 2
7 enfii 7665 . 2
81, 6, 7syl2anc 661 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  e.wcel 1758   class class class wbr 4409  Fnwfn 5532  -1-1-onto->wf1o 5536  `cfv 5537  (class class class)co 6222   cen 7441   cfn 7444  1c1 9420   cfz 11582   chash 12260   ceup 24052
This theorem is referenced by:  eupath2lem3  24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4520  ax-sep 4530  ax-nul 4538  ax-pow 4587  ax-pr 4648  ax-un 6505  ax-cnex 9475  ax-resscn 9476  ax-1cn 9477  ax-icn 9478  ax-addcl 9479  ax-addrcl 9480  ax-mulcl 9481  ax-mulrcl 9482  ax-mulcom 9483  ax-addass 9484  ax-mulass 9485  ax-distr 9486  ax-i2m1 9487  ax-1ne0 9488  ax-1rid 9489  ax-rnegex 9490  ax-rrecex 9491  ax-cnre 9492  ax-pre-lttri 9493  ax-pre-lttrn 9494  ax-pre-ltadd 9495  ax-pre-mulgt0 9496
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3083  df-sbc 3298  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3752  df-if 3906  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4209  df-int 4246  df-iun 4290  df-br 4410  df-opab 4468  df-mpt 4469  df-tr 4503  df-eprel 4749  df-id 4753  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-ord 4839  df-on 4840  df-lim 4841  df-suc 4842  df-xp 4963  df-rel 4964  df-cnv 4965  df-co 4966  df-dm 4967  df-rn 4968  df-res 4969  df-ima 4970  df-iota 5500  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6183  df-ov 6225  df-oprab 6226  df-mpt2 6227  df-om 6610  df-1st 6710  df-2nd 6711  df-recs 6966  df-rdg 7000  df-1o 7054  df-er 7235  df-pm 7351  df-en 7445  df-dom 7446  df-sdom 7447  df-fin 7448  df-card 8246  df-pnf 9557  df-mnf 9558  df-xr 9559  df-ltxr 9560  df-le 9561  df-sub 9734  df-neg 9735  df-nn 10461  df-n0 10718  df-z 10785  df-uz 11001  df-fz 11583  df-hash 12261  df-umgra 23716  df-eupa 24053
  Copyright terms: Public domain W3C validator