Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv1 Unicode version

Theorem eusv1 4646
 Description: Two ways to express single-valuedness of a class expression A(x). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1
Distinct variable groups:   ,   ,

Proof of Theorem eusv1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sp 1859 . . . 4
2 sp 1859 . . . 4
3 eqtr3 2485 . . . 4
41, 2, 3syl2an 477 . . 3
54gen2 1619 . 2
6 eqeq1 2461 . . . 4
76albidv 1713 . . 3
87eu4 2338 . 2
95, 8mpbiran2 919 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  E.wex 1612  E!weu 2282 This theorem is referenced by:  eusvnfb  4648 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-cleq 2449
 Copyright terms: Public domain W3C validator