![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusv1 | Unicode version |
Description: Two ways to express
single-valuedness of a class expression
A ( x ) . (Contributed by
NM, 14-Oct-2010.) |
Ref | Expression |
---|---|
eusv1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1859 | . . . 4 | |
2 | sp 1859 | . . . 4 | |
3 | eqtr3 2485 | . . . 4 | |
4 | 1, 2, 3 | syl2an 477 | . . 3 |
5 | 4 | gen2 1619 | . 2 |
6 | eqeq1 2461 | . . . 4 | |
7 | 6 | albidv 1713 | . . 3 |
8 | 7 | eu4 2338 | . 2 |
9 | 5, 8 | mpbiran2 919 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 E! weu 2282 |
This theorem is referenced by: eusvnfb 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-cleq 2449 |
Copyright terms: Public domain | W3C validator |