![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusv2nf | Unicode version |
Description: Two ways to express
single-valuedness of a class expression
A ( x ) . (Contributed by
Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 |
Ref | Expression |
---|---|
eusv2nf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2294 | . . . 4 | |
2 | nfe1 1840 | . . . . . . 7 | |
3 | 2 | nfeu 2300 | . . . . . 6 |
4 | eusv2.1 | . . . . . . . . 9 | |
5 | 4 | isseti 3115 | . . . . . . . 8 |
6 | 19.8a 1857 | . . . . . . . . 9 | |
7 | 6 | ancri 552 | . . . . . . . 8 |
8 | 5, 7 | eximii 1658 | . . . . . . 7 |
9 | eupick 2358 | . . . . . . 7 | |
10 | 8, 9 | mpan2 671 | . . . . . 6 |
11 | 3, 10 | alrimi 1877 | . . . . 5 |
12 | nf3 1961 | . . . . 5 | |
13 | 11, 12 | sylibr 212 | . . . 4 |
14 | 1, 13 | alrimi 1877 | . . 3 |
15 | dfnfc2 4267 | . . . 4 | |
16 | 15, 4 | mpg 1620 | . . 3 |
17 | 14, 16 | sylibr 212 | . 2 |
18 | eusvnfb 4648 | . . . 4 | |
19 | 4, 18 | mpbiran2 919 | . . 3 |
20 | eusv2i 4649 | . . 3 | |
21 | 19, 20 | sylbir 213 | . 2 |
22 | 17, 21 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 F/ wnf 1616 e. wcel 1818
E! weu 2282 F/_ wnfc 2605 cvv 3109 |
This theorem is referenced by: eusv2 4651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-pr 4032 df-uni 4250 |
Copyright terms: Public domain | W3C validator |