Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv4 Unicode version

Theorem eusv4 4661
 Description: Two ways to express single-valuedness of a class expression (x). (Contributed by NM, 27-Oct-2010.)
Hypothesis
Ref Expression
eusv4.1
Assertion
Ref Expression
eusv4
Distinct variable groups:   ,,   ,

Proof of Theorem eusv4
StepHypRef Expression
1 reusv2lem3 4655 . 2
2 eusv4.1 . . 3
32a1i 11 . 2
41, 3mprg 2820 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  =wceq 1395  e.wcel 1818  E!weu 2282  A.wral 2807  E.wrex 2808   cvv 3109 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-nul 4581  ax-pow 4630 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-nul 3785
 Copyright terms: Public domain W3C validator