![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusvnf | Unicode version |
Description: Even if is free in , it is effectively bound when
A ( x ) is single-valued.
(Contributed by NM, 14-Oct-2010.)
(Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
eusvnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2308 | . 2 | |
2 | vex 3112 | . . . . . . 7 | |
3 | nfcv 2619 | . . . . . . . 8 | |
4 | nfcsb1v 3450 | . . . . . . . . 9 | |
5 | 4 | nfeq2 2636 | . . . . . . . 8 |
6 | csbeq1a 3443 | . . . . . . . . 9 | |
7 | 6 | eqeq2d 2471 | . . . . . . . 8 |
8 | 3, 5, 7 | spcgf 3189 | . . . . . . 7 |
9 | 2, 8 | ax-mp 5 | . . . . . 6 |
10 | vex 3112 | . . . . . . 7 | |
11 | nfcv 2619 | . . . . . . . 8 | |
12 | nfcsb1v 3450 | . . . . . . . . 9 | |
13 | 12 | nfeq2 2636 | . . . . . . . 8 |
14 | csbeq1a 3443 | . . . . . . . . 9 | |
15 | 14 | eqeq2d 2471 | . . . . . . . 8 |
16 | 11, 13, 15 | spcgf 3189 | . . . . . . 7 |
17 | 10, 16 | ax-mp 5 | . . . . . 6 |
18 | 9, 17 | eqtr3d 2500 | . . . . 5 |
19 | 18 | alrimivv 1720 | . . . 4 |
20 | sbnfc2 3854 | . . . 4 | |
21 | 19, 20 | sylibr 212 | . . 3 |
22 | 21 | exlimiv 1722 | . 2 |
23 | 1, 22 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
E! weu 2282 F/_ wnfc 2605 cvv 3109
[_ csb 3434 |
This theorem is referenced by: eusvnfb 4648 eusv2i 4649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |