![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusvnfb | Unicode version |
Description: Two ways to say that
A ( x ) is a set
expression that does not
depend on . (Contributed by Mario
Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusvnfb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusvnf 4647 | . . 3 | |
2 | euex 2308 | . . . 4 | |
3 | eqvisset 3117 | . . . . . 6 | |
4 | 3 | sps 1865 | . . . . 5 |
5 | 4 | exlimiv 1722 | . . . 4 |
6 | 2, 5 | syl 16 | . . 3 |
7 | 1, 6 | jca 532 | . 2 |
8 | isset 3113 | . . . . 5 | |
9 | nfcvd 2620 | . . . . . . . 8 | |
10 | id 22 | . . . . . . . 8 | |
11 | 9, 10 | nfeqd 2626 | . . . . . . 7 |
12 | 11 | nfrd 1875 | . . . . . 6 |
13 | 12 | eximdv 1710 | . . . . 5 |
14 | 8, 13 | syl5bi 217 | . . . 4 |
15 | 14 | imp 429 | . . 3 |
16 | eusv1 4646 | . . 3 | |
17 | 15, 16 | sylibr 212 | . 2 |
18 | 7, 17 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 E! weu 2282 F/_ wnfc 2605
cvv 3109 |
This theorem is referenced by: eusv2nf 4650 eusv2 4651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 |
Copyright terms: Public domain | W3C validator |