Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj1 Unicode version

Theorem eusvobj1 6290
 Description: Specify the same object in two ways when class ( ) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypothesis
Ref Expression
eusvobj1.1
Assertion
Ref Expression
eusvobj1
Distinct variable groups:   ,,   ,

Proof of Theorem eusvobj1
StepHypRef Expression
1 nfeu1 2294 . . 3
2 eusvobj1.1 . . . 4
32eusvobj2 6289 . . 3
41, 3alrimi 1877 . 2
5 iotabi 5565 . 2
64, 5syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  =wceq 1395  e.wcel 1818  E!weu 2282  A.wral 2807  E.wrex 2808   cvv 3109  iotacio 5554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-nul 3785  df-sn 4030  df-uni 4250  df-iota 5556
 Copyright terms: Public domain W3C validator