![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusvobj1 | Unicode version |
Description: Specify the same object
in two ways when class ( ) is
single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by
Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
eusvobj1.1 |
Ref | Expression |
---|---|
eusvobj1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2294 | . . 3 | |
2 | eusvobj1.1 | . . . 4 | |
3 | 2 | eusvobj2 6289 | . . 3 |
4 | 1, 3 | alrimi 1877 | . 2 |
5 | iotabi 5565 | . 2 | |
6 | 4, 5 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818
E! weu 2282 A. wral 2807 E. wrex 2808
cvv 3109
iota cio 5554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-nul 3785 df-sn 4030 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |