![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eusvobj2 | Unicode version |
Description: Specify the same property
in two ways when class ( ) is
single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by
Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
eusvobj1.1 |
Ref | Expression |
---|---|
eusvobj2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn2 4101 | . . 3 | |
2 | eleq2 2530 | . . . . . 6 | |
3 | abid 2444 | . . . . . 6 | |
4 | elsn 4043 | . . . . . 6 | |
5 | 2, 3, 4 | 3bitr3g 287 | . . . . 5 |
6 | nfre1 2918 | . . . . . . . . 9 | |
7 | 6 | nfab 2623 | . . . . . . . 8 |
8 | 7 | nfeq1 2634 | . . . . . . 7 |
9 | eusvobj1.1 | . . . . . . . . 9 | |
10 | 9 | elabrex 6155 | . . . . . . . 8 |
11 | eleq2 2530 | . . . . . . . . 9 | |
12 | 9 | elsnc 4053 | . . . . . . . . . 10 |
13 | eqcom 2466 | . . . . . . . . . 10 | |
14 | 12, 13 | bitri 249 | . . . . . . . . 9 |
15 | 11, 14 | syl6bb 261 | . . . . . . . 8 |
16 | 10, 15 | syl5ib 219 | . . . . . . 7 |
17 | 8, 16 | ralrimi 2857 | . . . . . 6 |
18 | eqeq1 2461 | . . . . . . 7 | |
19 | 18 | ralbidv 2896 | . . . . . 6 |
20 | 17, 19 | syl5ibrcom 222 | . . . . 5 |
21 | 5, 20 | sylbid 215 | . . . 4 |
22 | 21 | exlimiv 1722 | . . 3 |
23 | 1, 22 | sylbi 195 | . 2 |
24 | euex 2308 | . . 3 | |
25 | rexn0 3932 | . . . 4 | |
26 | 25 | exlimiv 1722 | . . 3 |
27 | r19.2z 3918 | . . . 4 | |
28 | 27 | ex 434 | . . 3 |
29 | 24, 26, 28 | 3syl 20 | . 2 |
30 | 23, 29 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 E. wex 1612 e. wcel 1818
E! weu 2282 { cab 2442 =/= wne 2652
A. wral 2807 E. wrex 2808 cvv 3109
c0 3784 { csn 4029 |
This theorem is referenced by: eusvobj1 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-nul 3785 df-sn 4030 |
Copyright terms: Public domain | W3C validator |