![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > euxfr2 | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfr2.1 | |
euxfr2.2 |
Ref | Expression |
---|---|
euxfr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2euswap 2370 | . . . 4 | |
2 | euxfr2.2 | . . . . . 6 | |
3 | 2 | moani 2346 | . . . . 5 |
4 | ancom 450 | . . . . . 6 | |
5 | 4 | mobii 2307 | . . . . 5 |
6 | 3, 5 | mpbi 208 | . . . 4 |
7 | 1, 6 | mpg 1620 | . . 3 |
8 | 2euswap 2370 | . . . 4 | |
9 | moeq 3275 | . . . . . 6 | |
10 | 9 | moani 2346 | . . . . 5 |
11 | 4 | mobii 2307 | . . . . 5 |
12 | 10, 11 | mpbi 208 | . . . 4 |
13 | 8, 12 | mpg 1620 | . . 3 |
14 | 7, 13 | impbii 188 | . 2 |
15 | euxfr2.1 | . . . 4 | |
16 | biidd 237 | . . . 4 | |
17 | 15, 16 | ceqsexv 3146 | . . 3 |
18 | 17 | eubii 2306 | . 2 |
19 | 14, 18 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 E! weu 2282 E* wmo 2283
cvv 3109 |
This theorem is referenced by: euxfr 3285 euop2 4752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 |
Copyright terms: Public domain | W3C validator |