![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exanali | Unicode version |
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 25-Mar-1996.) (Proof shortened by Wolf Lammen, 4-Sep-2014.) |
Ref | Expression |
---|---|
exanali |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annim 425 | . . 3 | |
2 | 1 | exbii 1667 | . 2 |
3 | exnal 1648 | . 2 | |
4 | 2, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 |
This theorem is referenced by: sbn 2132 ax12indn 2273 rexnalOLD 2906 gencbval 3155 nss 3561 nssss 4708 brprcneu 5864 marypha1lem 7913 reclem2pr 9447 dftr6 29179 brsset 29539 dfon3 29542 dffun10 29564 elfuns 29565 vk15.4j 33298 vk15.4jVD 33714 dfss6 37792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |