MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbi Unicode version

Theorem exbi 1666
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exbi

Proof of Theorem exbi
StepHypRef Expression
1 bi1 186 . . 3
21aleximi 1653 . 2
3 bi2 198 . . 3
43aleximi 1653 . 2
52, 4impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  exbii  1667  exbidh  1676  exintrbi  1701  19.19  1959  2exbi  31285  rexbidar  31355  onfrALTlem5VD  33685  onfrALTlem1VD  33690  csbxpgVD  33694  csbrngVD  33696  csbunigVD  33698  e2ebindVD  33712  e2ebindALT  33729  bnj956  33835  bj-2exbi  34206  bj-3exbi  34207  bj-nfbi  34217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator