MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbidh Unicode version

Theorem exbidh 1676
Description: Formula-building rule for existential quantifier (deduction rule). (Contributed by NM, 26-May-1993.)
Hypotheses
Ref Expression
exbidh.1
exbidh.2
Assertion
Ref Expression
exbidh

Proof of Theorem exbidh
StepHypRef Expression
1 exbidh.1 . . 3
2 exbidh.2 . . 3
31, 2alrimih 1642 . 2
4 exbi 1666 . 2
53, 4syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  exbidv  1714  exbid  1886  drex2  2070  ac6s6  30580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator