![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exbiri | Unicode version |
Description: Inference form of exbir 33219. This proof is exbiriVD 33654 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
Ref | Expression |
---|---|
exbiri.1 |
Ref | Expression |
---|---|
exbiri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbiri.1 | . . 3 | |
2 | 1 | biimpar 485 | . 2 |
3 | 2 | exp31 604 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: biimp3ar 1329 eqrdavOLD 2456 tfrlem9 7073 sbthlem1 7647 addcanpr 9445 axpre-sup 9567 lbreu 10518 zmax 11208 uzsubsubfz 11736 elfzodifsumelfzo 11882 swrdccatin12lem3 12715 cshwidxmod 12774 ucnima 20784 usgraidx2vlem2 24392 wwlkextwrd 24728 numclwlk1lem2f1 25094 mdslmd1lem1 27244 mdslmd1lem2 27245 dfon2 29224 cgrextend 29658 brsegle 29758 brabg2 30206 ralxfrd2 32303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |