MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  excxor Unicode version

Theorem excxor 1368
Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
excxor

Proof of Theorem excxor
StepHypRef Expression
1 df-xor 1364 . 2
2 xor 891 . 2
3 ancom 450 . . 3
43orbi2i 519 . 2
51, 2, 43bitri 271 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  /\wa 369  \/_wxo 1363
This theorem is referenced by:  f1omvdco2  16473  psgnunilem5  16519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-xor 1364
  Copyright terms: Public domain W3C validator