MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistr Unicode version

Theorem exdistr 1776
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exdistr
Distinct variable group:   ,

Proof of Theorem exdistr
StepHypRef Expression
1 19.42v 1775 . 2
21exbii 1667 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  E.wex 1612
This theorem is referenced by:  19.42vv  1777  3exdistr  1780  sbccomlem  3406  coass  5531  uniuni  6609  eulerpartlemgvv  28315  dfiota3  29573  ac6s6f  30581  bnj986  34012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator