MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximOLD Unicode version

Theorem eximOLD 1655
Description: Obsolete proof of exim 1654 as of 4-Sep-2019. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eximOLD

Proof of Theorem eximOLD
StepHypRef Expression
1 con3 134 . . . 4
21al2imi 1636 . . 3
3 alnex 1614 . . 3
4 alnex 1614 . . 3
52, 3, 43imtr3g 269 . 2
65con4d 105 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  E.wex 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator