MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximal Unicode version

Theorem eximal 1615
Description: A utility theorem. An interesting case is when the same formula is substituted for both and , since then both implications express a type of non-freeness. See also alimex 1652. (Contributed by BJ, 12-May-2019.)
Assertion
Ref Expression
eximal

Proof of Theorem eximal
StepHypRef Expression
1 df-ex 1613 . . 3
21imbi1i 325 . 2
3 con1b 333 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  ax5e  1706  xfree2  27364  bj-nalnalimiOLD  34223  bj-exalimi  34225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator