MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exintr Unicode version

Theorem exintr 1702
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
Assertion
Ref Expression
exintr

Proof of Theorem exintr
StepHypRef Expression
1 exintrbi 1701 . 2
21biimpd 207 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612
This theorem is referenced by:  equs4v  1787  equs4  2035  eupickbi  2361  ceqsex  3145  r19.2z  3918  pwpw0  4178  pwsnALT  4244  ceqsex3OLD  30601  pm10.55  31274  bnj1023  33839  bnj1109  33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator