![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exintr | Unicode version |
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) |
Ref | Expression |
---|---|
exintr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exintrbi 1701 | . 2 | |
2 | 1 | biimpd 207 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 |
This theorem is referenced by: equs4v 1787 equs4 2035 eupickbi 2361 ceqsex 3145 r19.2z 3918 pwpw0 4178 pwsnALT 4244 ceqsex3OLD 30601 pm10.55 31274 bnj1023 33839 bnj1109 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |