Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimd Unicode version

Theorem exlimd 1914
 Description: Deduction form of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 23-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
Hypotheses
Ref Expression
exlimd.1
exlimd.2
exlimd.3
Assertion
Ref Expression
exlimd

Proof of Theorem exlimd
StepHypRef Expression
1 exlimd.1 . . 3
2 exlimd.3 . . 3
31, 2eximd 1882 . 2
4 exlimd.2 . . 3
5419.9 1893 . 2
63, 5syl6ib 226 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  E.wex 1612  F/wnf 1616 This theorem is referenced by:  exlimdh  1915  exlimdd  1980  equs5  2092  moexex  2363  2eu6  2383  exists2  2389  ceqsalgALT  3135  alxfr  4665  copsex2t  4739  mosubopt  4750  ovmpt2df  6434  ov3  6439  tz7.48-1  7127  ac6c4  8882  fsum2dlem  13585  fprod2dlem  13784  gsum2d2lem  17001  wl-lem-moexsb  30017  exlimddvf  30526  stoweidlem27  31809  fourierdlem31  31920  bj-equs5v  34332 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator