![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exlimddv | Unicode version |
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.) |
Ref | Expression |
---|---|
exlimddv.1 | |
exlimddv.2 |
Ref | Expression |
---|---|
exlimddv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddv.1 | . 2 | |
2 | exlimddv.2 | . . . 4 | |
3 | 2 | ex 434 | . . 3 |
4 | 3 | exlimdv 1724 | . 2 |
5 | 1, 4 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 |
This theorem is referenced by: fvmptdv2 5969 tfrlem9a 7074 erref 7350 domdifsn 7620 xpdom2 7632 enfixsn 7646 domunsn 7687 mapdom1 7702 sucdom2 7734 fineqvlem 7754 fissuni 7845 fipreima 7846 indexfi 7848 brwdom2 8020 wdomtr 8022 unwdomg 8031 unxpwdom 8036 infdifsn 8094 isinffi 8394 ac5num 8438 numacn 8451 acndom 8453 acndom2 8456 fodomacn 8458 infpss 8618 ssfin4 8711 domfin4 8712 enfin2i 8722 fin23lem31 8744 fin23lem41 8753 axcclem 8858 canthp1lem1 9051 canthp1 9053 winafp 9096 wun0 9117 prlem936 9446 supmul 10536 supxrre 11548 infmxrre 11556 ixxub 11579 ixxlb 11580 isumltss 13660 eulerth 14313 ramub2 14532 mrieqv2d 15036 mreexexlem4d 15044 acsinfd 15810 acsdomd 15811 issubg2 16216 psgnunilem3 16521 sylow1lem4 16621 sylow3 16653 prmcyg 16896 ablfaclem3 17138 lbspss 17728 lsmcv 17787 cygzn 18609 lbslcic 18876 lmff 19802 tgcmp 19901 hauscmplem 19906 clscon 19931 2ndcsep 19960 1stcelcls 19962 ptcnplem 20122 txcn 20127 fbdmn0 20335 ptcmplem2 20553 ptcmplem3 20554 tsmsxplem1 20655 met2ndci 21025 nmoid 21249 phtpcer 21495 phtpcco2 21499 cmetcau 21728 iscmet3lem2 21731 bcthlem4 21766 bcthlem5 21767 ovolicc2lem2 21929 vitali 22022 mbfimaopnlem 22062 limciun 22298 vieta1lem2 22707 tgldim0eq 23894 hpgerlem 24134 cusgrafi 24482 usgramaxsize 24487 isgrp2d 25237 minvecolem5 25797 foresf1o 27403 locfinref 27844 esumcst 28071 erdsze2lem1 28647 erdsze2 28649 ptpcon 28678 cvmliftpht 28763 relexpindlem 29062 mblfinlem2 30052 mblfinlem3 30053 mblfinlem4 30054 filnetlem3 30198 sdclem1 30236 sstotbnd 30271 prdsbnd 30289 prdstotbnd 30290 heibor1lem 30305 bfp 30320 eldioph2lem1 30693 eldioph2lem2 30694 rencldnfilem 30754 kelac1 31009 hbt 31079 cncmpmax 31407 lptre2pt 31646 itgsubsticclem 31774 stoweidlem28 31810 stoweidlem31 31813 stoweidlem46 31828 stoweidlem53 31835 stoweidlem59 31841 llnn0 35240 lplnn0N 35271 lvoln0N 35315 diaglbN 36782 diaintclN 36785 dibglbN 36893 dibintclN 36894 dihglblem2aN 37020 dihintcl 37071 dvh1dim 37169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |