![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exp0 | Unicode version |
Description: Value of a complex number
raised to the 0th power. Note that under our
definition, 0 0 = 1 , following the
convention used by Gleason.
Part of Definition 10-4.1 of [Gleason] p.
134. (Contributed by NM,
20-May-2004.) (Revised by Mario Carneiro,
4-Jun-2014.) |
Ref | Expression |
---|---|
exp0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 10900 | . . 3 | |
2 | expval 12168 | . . 3 | |
3 | 1, 2 | mpan2 671 | . 2 |
4 | eqid 2457 | . . 3 | |
5 | 4 | iftruei 3948 | . 2 |
6 | 3, 5 | syl6eq 2514 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 if cif 3941 { csn 4029
class class class wbr 4452 X. cxp 5002
` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 -u cneg 9829 cdiv 10231 cn 10561 cz 10889 seq cseq 12107 cexp 12166 |
This theorem is referenced by: 0exp0e1 12171 expp1 12173 expneg 12174 expcllem 12177 mulexp 12205 expadd 12208 expmul 12211 leexp1a 12224 exple1 12225 bernneq 12292 modexp 12301 exp0d 12304 faclbnd4lem1 12371 faclbnd4lem3 12373 faclbnd4lem4 12374 cjexp 12983 absexp 13137 binom 13642 incexclem 13648 incexc 13649 climcndslem1 13661 fprodconst 13782 ege2le3 13825 eft0val 13847 demoivreALT 13936 bits0 14078 0bits 14089 bitsinv1 14092 sadcadd 14108 smumullem 14142 numexp0 14562 psgnunilem4 16522 psgn0fv0 16536 psgnsn 16545 psgnprfval1 16547 cnfldexp 18451 expmhm 18485 expcn 21376 iblcnlem1 22194 itgcnlem 22196 dvexp 22356 dvexp2 22357 plyconst 22603 0dgr 22642 0dgrb 22643 aaliou3lem2 22739 cxp0 23051 1cubr 23173 log2ublem3 23279 basellem2 23355 basellem5 23358 lgsquad2lem2 23634 rusgranumwlk 24957 oddpwdc 28293 subfacval2 28631 fallfac0 29150 bpoly0 29812 m1expeven 31585 stoweidlem19 31801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-i2m1 9581 ax-1ne0 9582 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-recs 7061 df-rdg 7095 df-neg 9831 df-z 10890 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |