![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exp42 | Unicode version |
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
exp42.1 |
Ref | Expression |
---|---|
exp42 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp42.1 | . . 3 | |
2 | 1 | exp31 604 | . 2 |
3 | 2 | expd 436 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: isofrlem 6236 f1ocnv2d 6526 oelim 7203 zorn2lem7 8903 addid1 9781 issubg4 16220 lmodvsdir 17536 lmodvsass 17537 gsummatr01lem4 19160 dvfsumrlim3 22434 shscli 26235 f1o3d 27471 slmdvsdir 27759 slmdvsass 27760 initoeu1 32617 termoeu1 32624 lshpcmp 34713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |