MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp4d Unicode version

Theorem exp4d 609
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp4d.1
Assertion
Ref Expression
exp4d

Proof of Theorem exp4d
StepHypRef Expression
1 exp4d.1 . . 3
21expd 436 . 2
32exp4a 606 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  tfrlem9  7073  omass  7248  pssnn  7758  cardinfima  8499  ltexprlem7  9441  facdiv  12365  infpnlem1  14428  atcvatlem  27304  mdsymlem5  27326  mdsymlem7  27328  btwnconn1lem11  29747  exp5k  30121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator