MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp5c Unicode version

Theorem exp5c 616
Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
Hypothesis
Ref Expression
exp5c.1
Assertion
Ref Expression
exp5c

Proof of Theorem exp5c
StepHypRef Expression
1 exp5c.1 . . 3
21exp4a 606 . 2
32expd 436 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  fiint  7817  inf3lem2  8067  fgcl  20379  exp5l  30122  hbtlem2  31073  pclfinN  35624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator