![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expaddzlem | Unicode version |
Description: Lemma for expaddz 12210. (Contributed by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expaddzlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1020 | . . . 4 | |
2 | simp3 998 | . . . 4 | |
3 | expcl 12184 | . . . 4 | |
4 | 1, 2, 3 | syl2anc 661 | . . 3 |
5 | simp2r 1023 | . . . . 5 | |
6 | 5 | nnnn0d 10877 | . . . 4 |
7 | expcl 12184 | . . . 4 | |
8 | 1, 6, 7 | syl2anc 661 | . . 3 |
9 | simp1r 1021 | . . . 4 | |
10 | 5 | nnzd 10993 | . . . 4 |
11 | expne0i 12198 | . . . 4 | |
12 | 1, 9, 10, 11 | syl3anc 1228 | . . 3 |
13 | 4, 8, 12 | divrec2d 10349 | . 2 |
14 | simp2l 1022 | . . . . . . . . . . 11 | |
15 | 14 | recnd 9643 | . . . . . . . . . 10 |
16 | 15 | negnegd 9945 | . . . . . . . . 9 |
17 | nnnegz 10892 | . . . . . . . . . 10 | |
18 | 5, 17 | syl 16 | . . . . . . . . 9 |
19 | 16, 18 | eqeltrrd 2546 | . . . . . . . 8 |
20 | 2 | nn0zd 10992 | . . . . . . . 8 |
21 | 19, 20 | zaddcld 10998 | . . . . . . 7 |
22 | expclz 12191 | . . . . . . 7 | |
23 | 1, 9, 21, 22 | syl3anc 1228 | . . . . . 6 |
24 | 23 | adantr 465 | . . . . 5 |
25 | 8 | adantr 465 | . . . . 5 |
26 | 12 | adantr 465 | . . . . 5 |
27 | 24, 25, 26 | divcan4d 10351 | . . . 4 |
28 | 1 | adantr 465 | . . . . . . 7 |
29 | simpr 461 | . . . . . . 7 | |
30 | 6 | adantr 465 | . . . . . . 7 |
31 | expadd 12208 | . . . . . . 7 | |
32 | 28, 29, 30, 31 | syl3anc 1228 | . . . . . 6 |
33 | 21 | zcnd 10995 | . . . . . . . . . 10 |
34 | 33, 15 | negsubd 9960 | . . . . . . . . 9 |
35 | 2 | nn0cnd 10879 | . . . . . . . . . 10 |
36 | 15, 35 | pncan2d 9956 | . . . . . . . . 9 |
37 | 34, 36 | eqtrd 2498 | . . . . . . . 8 |
38 | 37 | adantr 465 | . . . . . . 7 |
39 | 38 | oveq2d 6312 | . . . . . 6 |
40 | 32, 39 | eqtr3d 2500 | . . . . 5 |
41 | 40 | oveq1d 6311 | . . . 4 |
42 | 27, 41 | eqtr3d 2500 | . . 3 |
43 | 1 | adantr 465 | . . . . 5 |
44 | 33 | adantr 465 | . . . . 5 |
45 | simpr 461 | . . . . 5 | |
46 | expneg2 12175 | . . . . 5 | |
47 | 43, 44, 45, 46 | syl3anc 1228 | . . . 4 |
48 | 21 | znegcld 10996 | . . . . . . . . . 10 |
49 | expclz 12191 | . . . . . . . . . 10 | |
50 | 1, 9, 48, 49 | syl3anc 1228 | . . . . . . . . 9 |
51 | 50 | adantr 465 | . . . . . . . 8 |
52 | 4 | adantr 465 | . . . . . . . 8 |
53 | expne0i 12198 | . . . . . . . . . 10 | |
54 | 1, 9, 20, 53 | syl3anc 1228 | . . . . . . . . 9 |
55 | 54 | adantr 465 | . . . . . . . 8 |
56 | 51, 52, 55 | divcan4d 10351 | . . . . . . 7 |
57 | 2 | adantr 465 | . . . . . . . . . 10 |
58 | expadd 12208 | . . . . . . . . . 10 | |
59 | 43, 45, 57, 58 | syl3anc 1228 | . . . . . . . . 9 |
60 | 15, 35 | negdi2d 9968 | . . . . . . . . . . . . 13 |
61 | 60 | oveq1d 6311 | . . . . . . . . . . . 12 |
62 | 15 | negcld 9941 | . . . . . . . . . . . . 13 |
63 | 62, 35 | npcand 9958 | . . . . . . . . . . . 12 |
64 | 61, 63 | eqtrd 2498 | . . . . . . . . . . 11 |
65 | 64 | adantr 465 | . . . . . . . . . 10 |
66 | 65 | oveq2d 6312 | . . . . . . . . 9 |
67 | 59, 66 | eqtr3d 2500 | . . . . . . . 8 |
68 | 67 | oveq1d 6311 | . . . . . . 7 |
69 | 56, 68 | eqtr3d 2500 | . . . . . 6 |
70 | 69 | oveq2d 6312 | . . . . 5 |
71 | 8, 4, 12, 54 | recdivd 10362 | . . . . . 6 |
72 | 71 | adantr 465 | . . . . 5 |
73 | 70, 72 | eqtrd 2498 | . . . 4 |
74 | 47, 73 | eqtrd 2498 | . . 3 |
75 | elznn0 10904 | . . . . 5 | |
76 | 75 | simprbi 464 | . . . 4 |
77 | 21, 76 | syl 16 | . . 3 |
78 | 42, 74, 77 | mpjaodan 786 | . 2 |
79 | expneg2 12175 | . . . 4 | |
80 | 1, 15, 6, 79 | syl3anc 1228 | . . 3 |
81 | 80 | oveq1d 6311 | . 2 |
82 | 13, 78, 81 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 cdiv 10231 cn 10561 cn0 10820
cz 10889 cexp 12166 |
This theorem is referenced by: expaddz 12210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |