![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expcl2lem | Unicode version |
Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014.) (Revised by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
expcllem.1 | |
expcllem.2 | |
expcllem.3 | |
expcl2lem.4 |
Ref | Expression |
---|---|
expcl2lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 10903 | . . 3 | |
2 | expcllem.1 | . . . . . . 7 | |
3 | expcllem.2 | . . . . . . 7 | |
4 | expcllem.3 | . . . . . . 7 | |
5 | 2, 3, 4 | expcllem 12177 | . . . . . 6 |
6 | 5 | ex 434 | . . . . 5 |
7 | 6 | adantr 465 | . . . 4 |
8 | simpll 753 | . . . . . . . 8 | |
9 | 2, 8 | sseldi 3501 | . . . . . . 7 |
10 | simprl 756 | . . . . . . . 8 | |
11 | 10 | recnd 9643 | . . . . . . 7 |
12 | nnnn0 10827 | . . . . . . . 8 | |
13 | 12 | ad2antll 728 | . . . . . . 7 |
14 | expneg2 12175 | . . . . . . 7 | |
15 | 9, 11, 13, 14 | syl3anc 1228 | . . . . . 6 |
16 | difss 3630 | . . . . . . . 8 | |
17 | simpl 457 | . . . . . . . . . 10 | |
18 | eldifsn 4155 | . . . . . . . . . 10 | |
19 | 17, 18 | sylibr 212 | . . . . . . . . 9 |
20 | 16, 2 | sstri 3512 | . . . . . . . . . 10 |
21 | 16 | sseli 3499 | . . . . . . . . . . . 12 |
22 | 16 | sseli 3499 | . . . . . . . . . . . 12 |
23 | 21, 22, 3 | syl2an 477 | . . . . . . . . . . 11 |
24 | eldifsn 4155 | . . . . . . . . . . . . 13 | |
25 | 2 | sseli 3499 | . . . . . . . . . . . . . 14 |
26 | 25 | anim1i 568 | . . . . . . . . . . . . 13 |
27 | 24, 26 | sylbi 195 | . . . . . . . . . . . 12 |
28 | eldifsn 4155 | . . . . . . . . . . . . 13 | |
29 | 2 | sseli 3499 | . . . . . . . . . . . . . 14 |
30 | 29 | anim1i 568 | . . . . . . . . . . . . 13 |
31 | 28, 30 | sylbi 195 | . . . . . . . . . . . 12 |
32 | mulne0 10216 | . . . . . . . . . . . 12 | |
33 | 27, 31, 32 | syl2an 477 | . . . . . . . . . . 11 |
34 | eldifsn 4155 | . . . . . . . . . . 11 | |
35 | 23, 33, 34 | sylanbrc 664 | . . . . . . . . . 10 |
36 | ax-1ne0 9582 | . . . . . . . . . . 11 | |
37 | eldifsn 4155 | . . . . . . . . . . 11 | |
38 | 4, 36, 37 | mpbir2an 920 | . . . . . . . . . 10 |
39 | 20, 35, 38 | expcllem 12177 | . . . . . . . . 9 |
40 | 19, 13, 39 | syl2anc 661 | . . . . . . . 8 |
41 | 16, 40 | sseldi 3501 | . . . . . . 7 |
42 | eldifsn 4155 | . . . . . . . . 9 | |
43 | 40, 42 | sylib 196 | . . . . . . . 8 |
44 | 43 | simprd 463 | . . . . . . 7 |
45 | neeq1 2738 | . . . . . . . . 9 | |
46 | oveq2 6304 | . . . . . . . . . 10 | |
47 | 46 | eleq1d 2526 | . . . . . . . . 9 |
48 | 45, 47 | imbi12d 320 | . . . . . . . 8 |
49 | expcl2lem.4 | . . . . . . . . 9 | |
50 | 49 | ex 434 | . . . . . . . 8 |
51 | 48, 50 | vtoclga 3173 | . . . . . . 7 |
52 | 41, 44, 51 | sylc 60 | . . . . . 6 |
53 | 15, 52 | eqeltrd 2545 | . . . . 5 |
54 | 53 | ex 434 | . . . 4 |
55 | 7, 54 | jaod 380 | . . 3 |
56 | 1, 55 | syl5bi 217 | . 2 |
57 | 56 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 \ cdif 3472
C_ wss 3475 { csn 4029 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 -u cneg 9829 cdiv 10231 cn 10561 cn0 10820
cz 10889 cexp 12166 |
This theorem is referenced by: rpexpcl 12185 reexpclz 12186 qexpclz 12187 m1expcl2 12188 expclzlem 12190 1exp 12195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |