![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expdimp | Unicode version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 |
Ref | Expression |
---|---|
expdimp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 | |
2 | 1 | expd 436 | . 2 |
3 | 2 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: rexlimdvv 2955 ralcom2 3022 reu6 3288 ssexnelpss 3892 wereu2 4881 ordtr3 4928 oneqmini 4934 suppssrOLD 6021 fun11iun 6760 poxp 6912 suppssr 6950 smoel 7050 omabs 7315 omsmo 7322 iiner 7402 fodomr 7688 fisseneq 7751 suplub2 7941 supnub 7942 inf3lem6 8071 cfcoflem 8673 coftr 8674 zorn2lem7 8903 alephreg 8978 inar1 9174 gruen 9211 letr 9699 lbzbi 11199 xrletr 11390 xmullem 11485 supxrun 11536 ssfzoulel 11906 ssfzo12bi 11907 hashbnd 12411 brfi1uzind 12532 cau3lem 13187 summo 13539 mertenslem2 13694 prodmolem2 13742 alzdvds 14036 nn0seqcvgd 14199 prmn2uzge3 14237 divgcdodd 14260 prmpwdvds 14422 catpropd 15104 pltnle 15596 pltval3 15597 pltletr 15601 tsrlemax 15850 frgpnabllem1 16877 cyggexb 16901 abvn0b 17951 isphld 18689 indistopon 19502 restntr 19683 cnprest 19790 lmss 19799 lmmo 19881 2ndcdisj 19957 txlm 20149 flftg 20497 bndth 21458 iscmet3 21732 bcthlem5 21767 ovolicc2lem4 21931 ellimc3 22283 lhop1 22415 ulmcaulem 22789 ulmcau 22790 ulmcn 22794 xrlimcnp 23298 ax5seglem4 24235 axcontlem2 24268 axcontlem4 24270 clwlkisclwwlklem2a 24785 rusgrasn 24945 frgrawopreglem5 25048 extwwlkfablem2 25078 gxadd 25277 gxmul 25280 nmcvcn 25605 htthlem 25834 atcvat3i 27315 sumdmdlem2 27338 ifeqeqx 27419 funbreq 29201 sltasym 29432 cgrdegen 29654 lineext 29726 btwnconn1lem7 29743 btwnconn1lem14 29750 waj-ax 29879 lukshef-ax2 29880 fin2solem 30039 unirep 30203 seqpo 30240 ssbnd 30284 intidl 30426 prnc 30464 prtlem15 30616 isnacs3 30642 lcmdvds 31214 pm14.24 31339 rexlim2d 31631 rngcinv 32789 rngcinvOLD 32801 ringcinv 32840 ringcinvOLD 32864 lindslinindsimp1 33058 lindslinindsimp2 33064 aacllem 33216 bnj23 33771 bnj849 33983 lshpkrlem6 34840 atlatmstc 35044 cvrat3 35166 ps-2 35202 2lplnj 35344 paddasslem5 35548 dochkrshp4 37116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |