MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expi Unicode version

Theorem expi 149
Description: An exportation inference. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
expi.1
Assertion
Ref Expression
expi

Proof of Theorem expi
StepHypRef Expression
1 pm3.2im 145 . 2
2 expi.1 . 2
31, 2syl6 33 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  bi3  187  imbi12  322  ex  434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator