![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expnbnd | Unicode version |
Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007.) |
Ref | Expression |
---|---|
expnbnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 10572 | . . 3 | |
2 | 1re 9616 | . . . . . . . 8 | |
3 | lttr 9682 | . . . . . . . 8 | |
4 | 2, 3 | mp3an2 1312 | . . . . . . 7 |
5 | 4 | exp4b 607 | . . . . . 6 |
6 | 5 | com34 83 | . . . . 5 |
7 | 6 | 3imp1 1209 | . . . 4 |
8 | recn 9603 | . . . . . . 7 | |
9 | exp1 12172 | . . . . . . 7 | |
10 | 8, 9 | syl 16 | . . . . . 6 |
11 | 10 | 3ad2ant2 1018 | . . . . 5 |
12 | 11 | adantr 465 | . . . 4 |
13 | 7, 12 | breqtrrd 4478 | . . 3 |
14 | oveq2 6304 | . . . . 5 | |
15 | 14 | breq2d 4464 | . . . 4 |
16 | 15 | rspcev 3210 | . . 3 |
17 | 1, 13, 16 | sylancr 663 | . 2 |
18 | peano2rem 9909 | . . . . . . . . . . 11 | |
19 | 18 | adantr 465 | . . . . . . . . . 10 |
20 | peano2rem 9909 | . . . . . . . . . . . 12 | |
21 | 20 | adantr 465 | . . . . . . . . . . 11 |
22 | 21 | adantl 466 | . . . . . . . . . 10 |
23 | posdif 10070 | . . . . . . . . . . . . . 14 | |
24 | 2, 23 | mpan 670 | . . . . . . . . . . . . 13 |
25 | 24 | biimpa 484 | . . . . . . . . . . . 12 |
26 | 25 | gt0ne0d 10142 | . . . . . . . . . . 11 |
27 | 26 | adantl 466 | . . . . . . . . . 10 |
28 | 19, 22, 27 | redivcld 10397 | . . . . . . . . 9 |
29 | 28 | adantll 713 | . . . . . . . 8 |
30 | 18 | adantl 466 | . . . . . . . . . 10 |
31 | subge0 10090 | . . . . . . . . . . . 12 | |
32 | 2, 31 | mpan2 671 | . . . . . . . . . . 11 |
33 | 32 | biimparc 487 | . . . . . . . . . 10 |
34 | 30, 33 | jca 532 | . . . . . . . . 9 |
35 | 21, 25 | jca 532 | . . . . . . . . 9 |
36 | divge0 10436 | . . . . . . . . 9 | |
37 | 34, 35, 36 | syl2an 477 | . . . . . . . 8 |
38 | flge0nn0 11954 | . . . . . . . 8 | |
39 | 29, 37, 38 | syl2anc 661 | . . . . . . 7 |
40 | nn0p1nn 10860 | . . . . . . 7 | |
41 | 39, 40 | syl 16 | . . . . . 6 |
42 | simplr 755 | . . . . . . 7 | |
43 | 21 | adantl 466 | . . . . . . . . 9 |
44 | peano2nn0 10861 | . . . . . . . . . . 11 | |
45 | 39, 44 | syl 16 | . . . . . . . . . 10 |
46 | 45 | nn0red 10878 | . . . . . . . . 9 |
47 | 43, 46 | remulcld 9645 | . . . . . . . 8 |
48 | peano2re 9774 | . . . . . . . 8 | |
49 | 47, 48 | syl 16 | . . . . . . 7 |
50 | simprl 756 | . . . . . . . 8 | |
51 | reexpcl 12183 | . . . . . . . 8 | |
52 | 50, 45, 51 | syl2anc 661 | . . . . . . 7 |
53 | flltp1 11937 | . . . . . . . . . 10 | |
54 | 29, 53 | syl 16 | . . . . . . . . 9 |
55 | 30 | adantr 465 | . . . . . . . . . 10 |
56 | 25 | adantl 466 | . . . . . . . . . 10 |
57 | ltdivmul 10442 | . . . . . . . . . 10 | |
58 | 55, 46, 43, 56, 57 | syl112anc 1232 | . . . . . . . . 9 |
59 | 54, 58 | mpbid 210 | . . . . . . . 8 |
60 | ltsubadd 10047 | . . . . . . . . . 10 | |
61 | 2, 60 | mp3an2 1312 | . . . . . . . . 9 |
62 | 42, 47, 61 | syl2anc 661 | . . . . . . . 8 |
63 | 59, 62 | mpbid 210 | . . . . . . 7 |
64 | 0lt1 10100 | . . . . . . . . . . . 12 | |
65 | 0re 9617 | . . . . . . . . . . . . 13 | |
66 | lttr 9682 | . . . . . . . . . . . . 13 | |
67 | 65, 2, 66 | mp3an12 1314 | . . . . . . . . . . . 12 |
68 | 64, 67 | mpani 676 | . . . . . . . . . . 11 |
69 | ltle 9694 | . . . . . . . . . . . 12 | |
70 | 65, 69 | mpan 670 | . . . . . . . . . . 11 |
71 | 68, 70 | syld 44 | . . . . . . . . . 10 |
72 | 71 | imp 429 | . . . . . . . . 9 |
73 | 72 | adantl 466 | . . . . . . . 8 |
74 | bernneq2 12293 | . . . . . . . 8 | |
75 | 50, 45, 73, 74 | syl3anc 1228 | . . . . . . 7 |
76 | 42, 49, 52, 63, 75 | ltletrd 9763 | . . . . . 6 |
77 | oveq2 6304 | . . . . . . . 8 | |
78 | 77 | breq2d 4464 | . . . . . . 7 |
79 | 78 | rspcev 3210 | . . . . . 6 |
80 | 41, 76, 79 | syl2anc 661 | . . . . 5 |
81 | 80 | exp43 612 | . . . 4 |
82 | 81 | com4l 84 | . . 3 |
83 | 82 | 3imp1 1209 | . 2 |
84 | simp1 996 | . 2 | |
85 | 1red 9632 | . 2 | |
86 | 17, 83, 84, 85 | ltlecasei 9713 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 E. wrex 2808
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cfl 11927
cexp 12166 |
This theorem is referenced by: expnlbnd 12296 expmulnbnd 12298 bitsfzolem 14084 bitsfi 14087 pclem 14362 aaliou3lem8 22741 ostth2lem1 23803 ostth3 23823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fl 11929 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |