![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expp1 | Unicode version |
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.) |
Ref | Expression |
---|---|
expp1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 10822 | . 2 | |
2 | seqp1 12122 | . . . . . . 7 | |
3 | nnuz 11145 | . . . . . . 7 | |
4 | 2, 3 | eleq2s 2565 | . . . . . 6 |
5 | 4 | adantl 466 | . . . . 5 |
6 | peano2nn 10573 | . . . . . . 7 | |
7 | fvconst2g 6124 | . . . . . . 7 | |
8 | 6, 7 | sylan2 474 | . . . . . 6 |
9 | 8 | oveq2d 6312 | . . . . 5 |
10 | 5, 9 | eqtrd 2498 | . . . 4 |
11 | expnnval 12169 | . . . . 5 | |
12 | 6, 11 | sylan2 474 | . . . 4 |
13 | expnnval 12169 | . . . . 5 | |
14 | 13 | oveq1d 6311 | . . . 4 |
15 | 10, 12, 14 | 3eqtr4d 2508 | . . 3 |
16 | exp1 12172 | . . . . . 6 | |
17 | mulid2 9615 | . . . . . 6 | |
18 | 16, 17 | eqtr4d 2501 | . . . . 5 |
19 | 18 | adantr 465 | . . . 4 |
20 | simpr 461 | . . . . . . 7 | |
21 | 20 | oveq1d 6311 | . . . . . 6 |
22 | 0p1e1 10672 | . . . . . 6 | |
23 | 21, 22 | syl6eq 2514 | . . . . 5 |
24 | 23 | oveq2d 6312 | . . . 4 |
25 | oveq2 6304 | . . . . . 6 | |
26 | exp0 12170 | . . . . . 6 | |
27 | 25, 26 | sylan9eqr 2520 | . . . . 5 |
28 | 27 | oveq1d 6311 | . . . 4 |
29 | 19, 24, 28 | 3eqtr4d 2508 | . . 3 |
30 | 15, 29 | jaodan 785 | . 2 |
31 | 1, 30 | sylan2b 475 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
{ csn 4029 X. cxp 5002 ` cfv 5593
(class class class)co 6296 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cn 10561 cn0 10820
cuz 11110
seq cseq 12107
cexp 12166 |
This theorem is referenced by: expcllem 12177 expm1t 12194 expeq0 12196 mulexp 12205 expadd 12208 expmul 12211 leexp2r 12223 leexp1a 12224 sqval 12227 cu2 12266 i3 12269 binom3 12287 bernneq 12292 modexp 12301 expp1d 12311 faclbnd 12368 faclbnd2 12369 faclbnd4lem1 12371 faclbnd6 12377 cjexp 12983 absexp 13137 binomlem 13641 climcndslem1 13661 climcndslem2 13662 geolim 13679 geo2sum 13682 efexp 13836 demoivreALT 13936 rpnnen2lem11 13958 prmdvdsexp 14255 pcexp 14383 prmreclem6 14439 decexp2 14561 numexpp1 14564 cnfldexp 18451 expcn 21376 mbfi1fseqlem5 22126 dvexp 22356 aaliou3lem2 22739 tangtx 22898 cxpmul2 23070 mcubic 23178 cubic2 23179 binom4 23181 dquartlem2 23183 quart1lem 23186 quart1 23187 quartlem1 23188 log2cnv 23275 log2ublem2 23278 log2ub 23280 basellem3 23356 chtublem 23486 perfectlem1 23504 perfectlem2 23505 bclbnd 23555 bposlem8 23566 dchrisum0flblem1 23693 pntlemo 23792 qabvexp 23811 rusgranumwlks 24956 oddpwdc 28293 subfacval2 28631 sinccvglem 29038 heiborlem6 30312 bfplem1 30318 altgsumbcALT 32942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |