![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > expsub | Unicode version |
Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expsub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 10924 | . . 3 | |
2 | expaddz 12210 | . . 3 | |
3 | 1, 2 | sylanr2 653 | . 2 |
4 | zcn 10894 | . . . . 5 | |
5 | zcn 10894 | . . . . 5 | |
6 | negsub 9890 | . . . . 5 | |
7 | 4, 5, 6 | syl2an 477 | . . . 4 |
8 | 7 | adantl 466 | . . 3 |
9 | 8 | oveq2d 6312 | . 2 |
10 | expnegz 12200 | . . . . . 6 | |
11 | 10 | 3expa 1196 | . . . . 5 |
12 | 11 | adantrl 715 | . . . 4 |
13 | 12 | oveq2d 6312 | . . 3 |
14 | expclz 12191 | . . . . . 6 | |
15 | 14 | 3expa 1196 | . . . . 5 |
16 | 15 | adantrr 716 | . . . 4 |
17 | expclz 12191 | . . . . . 6 | |
18 | 17 | 3expa 1196 | . . . . 5 |
19 | 18 | adantrl 715 | . . . 4 |
20 | expne0i 12198 | . . . . . 6 | |
21 | 20 | 3expa 1196 | . . . . 5 |
22 | 21 | adantrl 715 | . . . 4 |
23 | 16, 19, 22 | divrecd 10348 | . . 3 |
24 | 13, 23 | eqtr4d 2501 | . 2 |
25 | 3, 9, 24 | 3eqtr3d 2506 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
(class class class)co 6296 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 cdiv 10231 cz 10889 cexp 12166 |
This theorem is referenced by: expm1 12215 ltexp2a 12217 leexp2a 12221 iexpcyc 12272 expmulnbnd 12298 expsubd 12321 m1expaddsub 16523 psgnuni 16524 aaliou3lem8 22741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 |
Copyright terms: Public domain | W3C validator |