![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exsb | Unicode version |
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
exsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . 2 | |
2 | nfa1 1897 | . 2 | |
3 | ax12v 1855 | . . 3 | |
4 | sp 1859 | . . . 4 | |
5 | 4 | com12 31 | . . 3 |
6 | 3, 5 | impbid 191 | . 2 |
7 | 1, 2, 6 | cbvex 2022 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |