Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exse Unicode version

Theorem exse 4848
 Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse

Proof of Theorem exse
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4602 . . 3
21ralrimivw 2872 . 2
3 df-se 4844 . 2
42, 3sylibr 212 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  e.wcel 1818  A.wral 2807  {crab 2811   cvv 3109   class class class wbr 4452  Sewse 4841 This theorem is referenced by:  wemoiso  6785  wemoiso2  6786  oiiso  7983  hartogslem1  7988  oemapwe  8134  cantnffval2  8135  oemapweOLD  8156  cantnffval2OLD  8157  om2uzoi  12066  uzsinds  29296  bpolylem  29810 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-in 3482  df-ss 3489  df-se 4844
 Copyright terms: Public domain W3C validator