MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsimpl Unicode version

Theorem exsimpl 1677
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 457 . 2
21eximi 1656 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612
This theorem is referenced by:  19.40  1679  euexALT  2328  moexex  2363  elex  3118  sbc5  3352  r19.2zb  3919  dmcoss  5267  suppimacnvss  6928  unblem2  7793  kmlem8  8558  isssc  15189  pm10.55  31274  bnj1143  33849  bnj1371  34085  bnj1374  34087  bj-elissetv  34437  atex  35130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613
  Copyright terms: Public domain W3C validator