![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > exsnrex | Unicode version |
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
exsnrex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnid 4058 | . . . . 5 | |
2 | eleq2 2530 | . . . . 5 | |
3 | 1, 2 | mpbiri 233 | . . . 4 |
4 | 3 | pm4.71ri 633 | . . 3 |
5 | 4 | exbii 1667 | . 2 |
6 | df-rex 2813 | . 2 | |
7 | 5, 6 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
E. wrex 2808 { csn 4029 |
This theorem is referenced by: frgrawopreg1 25050 frgrawopreg2 25051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rex 2813 df-v 3111 df-sn 4030 |
Copyright terms: Public domain | W3C validator |